“Shadowing” of the electromagnetic field of relativistic charged particles
نویسندگان
چکیده
In radiation processes such as a transition radiation, diffraction radiation, etc. based on relativistic electrons passing through or near an opaque screen, the electron self-field is partly shadowed after the screen over a distance of the order of the formation length γλ. This effect has been investigated on coherent diffraction radiation (DR) by electron bunches. Absorbing and conductive half-plane screens were placed at various distances L before a standard DR source (inclined half-plane mirror). The radiation intensity was reduced when the screen was at small L and on the same side as the mirror. No reduction was observed when the screen was on the opposite side. It is worth noting that absorbing and conductive half-plane screens produce the same shadowing effect. The shadowing effect is responsible for a bound on the intensity of Smith-Purcell radiation.
منابع مشابه
Investigation of Charged Particles Radiation Moving in a Homogeneous Dispersive Medium (TECHNICAL NOTE)
In this work, we use Drude-Lorents model description to study the radiation of a charged particles moving in a homogeneous dispersive medium. A suitable quantized electromagnetic field for such medium is utilized to obtain proper equations for energy loss of the particle per unit length. The energy loss is separately calculated for transverse and longitudinal components of the filed operators. ...
متن کاملCanonical Realization of the Poincaré Algebra for a Relativistic System of Charged Particles Plus Electromagnetic Field
The procedure of reducing of canonical field degrees of freedom for a system of charged particles plus electromagnetic field in the constraint Hamiltonian formalism is developed up to the first order in the coupling constant expansion. The canonical realization of the Poincaré algebra in the terms of physical variables is found. The relation between covariant and physical particle variables in ...
متن کاملAn approximate analytical solution of the Bethe equation for charged particles in the range of radiotherapy energy
Charged particles such as protons and carbon ions are an increasing tool in radiation therapy. However, unresolved physical problems prevent optimal performance, including estimating the deposited dose in non-homogeneous tissue, is an essential aspect of optimizing treatment. The Monte Carlo (MC) method can be used to estimate the amount of radiation, but, this powerful computing operation is v...
متن کاملA Review of the Applications of the Electromagnetic Field in Regenerative Medicine and Cancer Treatment
The term "electromagnetic fields" (EMF) is a combination of electric and magnetic fields as a diagnostic method as well as a therapeutic tool with many advantages such as ease of operation and painlessness, very controllable, which today has found wide application in regenerative medicine and also cancer treatment. In addition to organs such as nerves, hearts, and bones that have an electrica...
متن کاملClassical relativistic systems of charged particles in the front form of dynamics and the Liouville equation
Classical relativistic system of point particles coupled with an electromagnetic field is considered in the three-dimensional representation. The gauge freedom connected with the chronometrical invariance of the four-dimensional description is reduced by use of the geometrical concept of the forms of rel-ativistic dynamics. The remainder gauge degrees of freedom of the electromagnetic potential...
متن کامل